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Abstract. The problem of the numerical determination of eigenvalues of the one- 
dimensional Schrodinger equation with symmetrical potential V ( x )  is considered. The 
problem is reduced to the definition of an ‘eigenvalue function’ G ( E )  well defined for the 
given potential V. It is theoretically proved. that the even-parity eigenvalues are given by 
G ( E )  = 0, and the odd-parity eigenvalues are given by G ( E )  = 00. The method is ‘canonical’ 
in the sense that it is independent of the eigenfunction; yet, along with the eigenvalue, it 
allows the determination of the eigenfunction initial values. This method is applied to the 
potentials V = x2, V = x6 - bx2, V = x2 + Ax’/( 1 + gx2), where exact eigenvalues are avail- 
able. The numerical results, compared with the exact ones and with those of previous 
confirmed methods, show that the present method is accurate and efficient. 

1. Introduction 

The problem of the numerical computation of the eigenvalues of the one-dimensional 
Schrodinger equation 

d2y(x) /dx2+(E - V(X))Y(X)=O (1) 

is already solved, since the early work of Cooley (1961), yet a great deal of interest 
for this problem is still seen, namely when the potential V(x) is an even function of x. 

According to the widely used Cooley (1961) shooting method, the eigenvalues E,, 
are determined by using the following properties of the eigenfunction: 

( i )  y (x)  and y’(x) are continuous for a s  x s b ;  
(ii) y ( x )  obeys the boundary conditions 

where -a  = 6 = CO for an even potential, and a = - r e ,  6 =CO for the diatomic potential 
with an equilibrium internuclear distance re (Messiah 1972). 

The accuracy of this shooting method depends highly on that of the Numerov 
difference equation (Numerov 1933, Froberg 1979) used to approximate equation (1). 
Recent works dealing with this problem seek to improve the accuracy by: (i) using 
higher-order difference equations (Hajj et a1 1974, Cash and Raptis 1984, Fack and 
Vanden Berghe 1985,1986, Killingbeck 1986); (ii) looking for other algorithms (Shore 
1973, Mitra 1978, Kaushal 1979, Bessis and Bessis 1980, Kobeissi 1982, Fack et al 
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1986, Cohen and Kais 1986); (iii) constructing exact solutions of (1) for specific 
potentials (Razavy 1980, Flessas 1981, 1982, Varma 1981, Whitehead et a1 1982). 

Within this frame, the even potential function V ( x )  presents some particulars 
pointed out recently by Killingbeck (1986, 1987) and by Fack and Vanden Berghe 
(1987), who considered the following functions: 

V ( x )  = x z  (3.1) 

V ( X )  = x 6  - bX2 b parameter (3.2) 

v ( x )  = x 2 + A x 2 / ( 1 + g x 2 )  A, g parameters. (3.3) 

Each of these potentials plays a role in several areas of physics. 
The aim of this work is to show that the recent ‘canonical functions method’ 

(Kobeissi 1982), already used with success for diatomic potentials (Kobeissi et a1 1983, 
1988, Dagher et a1 1984, 1988), can be extended to symmetrical potentials. The method 
is ‘canonical’ in the sense that it dissociates the determination of the eigenvalue from 
that of the eigenfunction, and allows the derivation of an ‘eigenvalue equation’ related 
uniquely to the given potential V ( x ) .  The theory is presented in 92, and tested for 
V ( x )  = x 2  in Q 3 where we underline the fact that the proposed method may be used 
with several difference equations. Applications to other potentials are presented in § 4 
along with comparisons with previous works. 

2. The eigenvalue equation 

For a given potential V ( x )  and for an arbitrary value of the ‘parameter’ E, the solution 
of (1) may be written 

y ( E ;  x )  = y ( E ;  x o ) a ( E ;  xo; x ) + y ‘ ( E ;  xo)P(E;  xo; x )  (4) 

where xo is an arbitrary origin (a  < xo < b ) ,  cy and /3 are two particular solutions of 
(1) having the initial values 

a ( E ;  x O ;  x O )  = @ ’ ( E ;  x O ;  xg) = 1 a ’ ( E ;  x,; xo) = @ ( E ;  x,; xo) = 0. ( 5 )  

By imposing on y ( E ;  x )  the boundary conditions at a and b, one can write 

It is useful to point out that the use of the ratio 

q ( E ;  xo; x )  = - a ( E ;  xo; x ) / P ( E ;  xo; x )  

allows one to consider the ‘limits’ 

l - ( E ;  xo)  = lim q ( E ;  x,; x )  
X‘Ll 

I+(,!?; xo) = lim q ( E ;  xo; x )  
x- b 

(9) 

(9’) 
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and to notice that for a solution E of (7) (where 
according to equations (6) and (6’) 

is an eigenvalue of ( 1 ) )  and 

(10) 

More generally, we associate with the potential V ( x ) ,  the ‘eigenvalue function’ 

/-(E; xo) = ]+(E; xo) = y ‘ ( i ;  x o ) / y ( E ;  xo). 

F ( E )  defined by 

F (  E )  = It( E ;  x O )  - I - (  E ; x O )  ( 1 1 )  

and having for zeros the solutions of (7), i.e. the eigenvalues Eo,  E l ,  E,, . . . , E,,  . . . 
related to the given potential V ( x ) .  

The ‘eigenvalue equation’ F (  E )  = 0 may be used for any given potential; its solutions 
are independent of the arbitrary ‘origin’ x o .  Yet when the potential V ( x )  is symmetrical, 
b = -a, and when xo = 0, equation (7) becomes an identity for any value of E (eigenvalue 
or not). 

Thus for a given symmetrical potential V ( x ) ,  one must take xo # 0. However, when 
one prefers the use of xo = 0 for practical or theoretical reasons, a different formulation 
of the eigenvalue equation may be derived as follows. 

For a symmetrical potential, and for x,, = 0, the eigenfunction y , ( x )  = y (E , ;  x )  has 
initial values at xo = 0 depending on the parity of n, i.e. 

y(En, ;  0) f 0 y’( E,.; 0) = 0 n’ even (12) 

y (  E,,.; 0) = 0 y‘( E,,,; 0) # 0 n” odd. ( 12’) 

When we impose the boundary condition at a (or at b ) ,  we obtain according to 
the parity of n 

y(E,,; a )  =O=y’(E,,; O)a(E,.; 0; a )  

or 

y(E,,,; a )  =O=y‘(E,,,; O)P(E,.; 0; U )  

and for an arbitrary value of E 

y ( E ;  a )  = O = y ( E ;  O)a (E;  0; a ) + y ’ ( E ;  O ) P ( E ;  0; a). (13) 

This last equation allows one to consider the logarithmic derivative of y at x = 0, 
and to write 

I ( E ; O ) = y ’ ( E ; O ) / y ( E ; O ) = - a ( E ; O ;  a ) / P ( E ; O ;  U )  

= - a ( E ;  0; b ) / P ( E ;  0; b) .  (14) 

According to equations (12) and (127, I ( E ;  0) takes the values zero for E = E,,, 
(even level), and infinity for E = E,,,. (odd level). Consequently we associate with the 
symmetrical potential V ( x )  the ‘eigenvalue function’ G ( E )  = / ( E ;  0), such as 

for even eigenvalues 
for odd eigenvalues. 

G(E) = 

The use of the ‘canonical functions’ a ( E ;  xo; x )  and P ( E  ; xo; x )  allows us to derive 
the eigenvalue equation in its general form (equation (7) for any potential, with xo # 0 
for an even potential), or in a form peculiar to the even potential (15 ) .  
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The determination of the eigenvalue E,  being thus dissociated from that of the 
eigenfunction y(E,; x), one may easily deduce y(E, ;  x)  from E , .  Once E,  is known 
from (7), we deduce from (6) the y-log derivative at x, 

YYE; xo)lY(E; xo) = - a ( E ;  xo; a ) I P ( E ;  xo; 0 ) .  (16) 
This relation allows one to take y ( E ;  xo) = 1 (with no loss of generality), and to deduce 
y’(E; x,) in terms of (Y and P for any E, and thus for an eigenvalue E,,. 

Therefore, once E,  is known, the eigenfunction initial values are known, i.e. the 
eigenfunction y(E,; x )  is deduced. 

This general conclusion is simplified in the case of a symmetrical potential with 
xo= 0, where the eigenfunction y(E,; x )  is nothing but one of the two canonical 
functions according to the parity of n (equations (4) and (8)) 

y(E,,; x )  = C(Y(E,.; 0; x)  

y(E,,t; x )  = CP(E,,,; 0; x )  

n’ even 

n” odd 

where C is an arbitrary constant determined as usual by normalisation. 

3. The harmonic oscillator 

The harmonic oscillator V(x) = x2 is well designed to illustrate the numerical applica- 
tion of the present method, and to make useful comparisons with previous works, 
namely with those of Killingbeck (1987) and Fack and Vanden Berghe (1985, 1987). 

The determination of the eigenvalues E,,  E , ,  . . . , E,,  . . . is done by looking to the 
successive solutions of equation (7) when E varies from zero to infinity. The numerical 
application is done in the following order. 

(i) We start at xo (= 1, for example) to compute & ( E ;  x,; x )  and P ( E ;  xo; x )  for 
x >  x,, by replacing (1) by a convenient difference equation (that of Numerov (1933), 
for example). This computation is stopped when the function q ( E ;  x,; x )  = 
- a ( E ;  x,; x ) /P (E ;  x,; x )  reaches a constant l + ( E ;  x,) (within a precision E )  for a 
value x+(E).  This is the numerical value of b. 

(ii) Step (i)  is repeated for x<x,;  l - ( E ;  xo) and x-(E)  are obtained. 
(iii) The function F ( E )  = l+(E;  x,) - l-(E; x,) is considered. If F ( E )  = O  (i.e. 

IF(,!?)/ s E, E being a desired tolerance or the computer precision), this value of E is 
an eigenvalue; if not, E is increased till we have F ( E )  = 0. 

(iv) Steps (i)-(iii) are repeated for the next eigenvalue, and so on. 
We show in figure 1 the variation of the function F ( E )  with E. The shape of this 

curve shows that the numerical determination of its zeros E,,  E , ,  . . . , E,,  . . . 
(the eigenvalues of equation (1)) is easy, by using one of the well known standard 
techniques. The values of E,,  obtained for n = 0, 1 ,2 ,3 ,  are given in table 1, along 
with those found by Fack and Vanden Berghe (1987) using the Numerov difference 
equation. 

Our results are given by using the Numerov difference equation (with the same 
mesh size h = 0.05 used by Fack and Vanden Berghe (1987)). We verified by using 
other ‘origins’ x, # 0, that our results are, as must be, independent of x,. 

This work was repeated by taking x, = 0 and using the corresponding eigenvalue 
equation (15).  We show in figure 2 the variation of G( E )  with E. According to ( 1 9 ,  
the zeros of this curve give the odd eigenvalues; the abscissae of the asymptotes are 
the even eigenvalues. The numerical results are identical to those obtained by (7) and 
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E 

Figure 1. Variation of F ( E )  with E. 

Table 1. Comparison of the eigenvalues computed for the potential V = x2, by the present 
method (PM),  and by Fack and Vanden Berghe (1987) (FV) (for the first four levels, 
0 s  n s 3 ) .  AE is the difference between exact and computed eigenvalues in absolute value. 
The two methods make use of the Numerov difference equation with a step length h = 0.05. 
R designates the total range of integration. 

0 1 5 x 10-8 s x 1 0 - ~  10 5.1 
1 3 3 x io-’ 4 x 10 5.9 
2 5 1 x lo+ 2~ io-’ 10 6.1 
3 7 3 x lo+ 2 x io-’ 10 6.1 

given in table 1. All computations are done on the computer HP9000/220 (to 15 
significant digits). 

4. Discussion 

The results of table 1 show that by using the canonical functions method with the 
same difference equation (Numerov) and the same mesh size ( h  = 0.05) used by Fack 
and Vanden Berghe (1987), the eigenvalues obtained by the present method are more 
accurate than those obtained by the previous one. We note also that the total range 
of integration R has to be determined by a prior guess for the previous work, but not 
forthe present one; it is obtained when the ratio q ( E ;  xo; x) = -a(E; x,; x ) / P ( E ;  xo; x )  
reaches its asymptote 1(E;  xo) as x +  +cc (and/or as x +  -a). For a given potential, 
R is obviously a function, of E and of the computation of CY and p, i.e. of the numerical 
integration of ( 1 ) .  



292 H Kobeissi, M Kobeissi and A El-Hajj 

J 

E 

Figure 2. Variation of G ( E )  with E. 

The same remarks can be made for other potentials. We give in table 2 the results 
obtained for two potentials V = -bx2+ x6 and V = x2+ Ax2 / (  1 + gx2) used by Fack and 
Vanden Berghe (1987) and for several values of the parameters. Some other applications 
gave similar results. 

One of the major difficulties related to the present problem lies in the instability 
observed near the boundaries a and/or b. Several authors (Holt 1964, Osborne 1969, 

Table 2. Comparison of the eignvalues computed for two potentials V =  -bx2+x6 and 
V = xz + Ax2/( 1 + gx’) by the present method ( PM), and by Fack and Vanden Berghe (1987) 
(FV) (for several values of the parameters b and A,  g) .  P E  is the difference between exact 
and computed eigenvalues in absolute value. The two methods make use of the Numerov 
difference equation with the same step length h, and with the total range of integration R. 

Parameter E (exact) A€,” A E P M  RF” R P M  

V = - bx2 + x6;  h = 0.02 
b = l l  -8 3 x io-’ 2 x lo-@ 4 2.8 

8 3 x 1 x 4 2.9 
b = 1 3  -11.313 708 500 5 x lo-? 2 x io-’ 4 2.9 

11.313 708 500 7 x 5 x io-’ 4 2.9 
b = 1 5  -15.077 508 510 5 x io-’ 9 x lo-* 4 3.0 

15.077 508 510 1 x 1 x 1 0 P  4 2.9 
b = 1 7  -19.158 416010 6 x lo-’ 1 x io-’ 4 2.9 

19.158 416 010 3 x 1 0 - ~  2 x 4 2.9 

V = x 2  + Ax2/( 1 + gx’); h = 0.05, g = 0.1 
A = -0.42 0.8 3 x lo-@ 1 x 1 0 - ~  10 5.7 
A = - 0 . 6 7 + 0 . 1 m  2.3 + 7 x io-’ I x lo-@ 10 6.1 
A = -0.46 2.4 2 x lo-? 2 x 10-’O 10 5.9 
A = - 0 . 7 3 + 0 . 1 m  3 . 7 + m  2 x 3 x 1 0 - ~  10 6.3 



Eigenvalues of Schrodinger equation 293 

Roberts and Shipman 1971, Gupta and Agarwal 1985) pointed out that simple shooting 
methods applied to V = x 2 ,  E = - 1  and xo=O, do not suffice to find y ( x )  beyond 
x - 3.5. Killingbeck (1987) presented new techniques allowing him to reach x - 5. 

We applied the present method to this specific problem, by using the Numerov 
difference equation with the same mesh size h = 0.05 used by Killingbeck. We give in 
table 3 the values of y ( x )  computed by our method along with those given by Killingbeck 
(i)  by using a ‘simple’ shooting method and (ii) by using a ‘stabilised’ method. We 
notice that our results are even more stable than those of Killingbeck. 

Table 3. Value of the solution y ( x )  of the Schrodinger equation for V =  x2 and E = -1. 
For each x, the result obtained by the present method is compared with those given by 
Killingbeck (1987) using both a simple shooting method and a ‘stabilised’ one. The three 
methods make use of the Numerov difference equation with a step length h = 0.05 for the 
two last columns and h =0.025 for the first one. In the last line the initial y derivative 
G = y ’ (0 )  is deduced from each method. 

Simple Stabilised Present 
X method method method 

0 
1 
2 
3 
4 
4.5 
5 
5.5 

1 1 1 
0.259 344 0.259 342 6 0.259 342 547 
0.034 566 0.034 564 1 0.034 564 045 
0.001 992 0.001 988 5 0.001 988 523 
0.000 157 0.000 046 0 0.000 045 958 
0.000 929 0.000 004 87 0.000 004 907 
o t  o t  0.000 000 414 

0.000 000 039 

G -1.128 463 -1.128 378 -1.128 379 287 

t Rendered formally zero by choice of weighting factors. 

For the present problem, and for similar problems, one should distinguish between 
the ‘method’ (how to make the link between initial values and boundary conditions), 
and the ‘tool’ (how to make the numerical integration of the Schrodinger equation). 
The most used method, the Cooley shooting method, is usually associated with the 
Numerov difference equation. 

However, many methods (like the canonical functions one) may be used with 
different ‘tools’. We recently made a comparison (Kobeissi et a1 1988) of several 
difference equations used for the diatomic eigenvalue problem. 

The accuracy of a method depends, obviously, on the difference equation used, 
but also on other factors. We believe it is important, when possible, to compare two 
methods using the same difference equation (in order to test the ‘method’), or to 
compare the same method using two different difference equations (in order to test 
the ‘tool’). 

For this reason the examples of the numerical application presented here are done 
with the commonly used Numerov difference equation. Yet, the present method is 
shown to be efficient by using other difference equations, such as the ‘integrals 
superposition’ which is well suited for the present problem (Kobeissi 1982, Dagher et 
al 1988, Kobeissi et a1 1988). We give in table 4 an example of our results for V = xz, 
compared with the results obtained by Fack and Vanden Berghe (1987) with higher- 
order difference equations. The numerical details may be found elsewhere (Dagher 
et a1 1988, Kobeissi et a1 1988). 
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Table 4. Comparison of the eignevalues computed for the potential V =  x2 by the present 
method with the ‘integral superposition’ difference equation (last column), with those 
obtained by Fack and Vanden Berghe (1987) using two higher-order difference equations 
(for the same level n of table 1). A E  is the difference between exact and computed 
eigenvalues in absolute value. The step length h and the total range R of integration are 
displayed for each method. 

Fack and Vanden Berghe” Present methodb 

Extended Integrals 
n E (exact) Heptadiagonal Numerov superposition 

0 1 2 x 10-10 6 x  lo-“ 2 x 10-12 
1 3 2 x 1 0 - ~  5 x 10-10 7 x lo- “  
2 5 7 x 1 0 - ~  2 x 1 0 - ~  7 x lo-‘‘ 
3 7 2 x 10-8 7 x 1 0 - ~  3 x 10-10 

h = 0.05; R = 10. 
’ h = 0.5; R varies from 7 to 9. 

5. Conclusion 

The canonical functions formulation already used to derive an ‘eigenvalue function’ 
F (  E )  associated with a diatomic potential (unsymmetrical one) is shown to be appropri- 
ate, under one restriction, to find the eigenvalues related to a symmetrical potential. 
The eigenvalues are the successive roots of the equation F (  E )  = 0; this equation 
depends on the ‘canonical functions’ a and p, well defined for the given potential, 
and not on the eigenfunction y ( x ) .  

A similar formulation taking for ‘origin’ x=O, makes use of another ‘similar 
eigenvalue function’ G( E )  associated with a symmetrical potential. It is proved, 
theoretically, that (i) the even-parity eigenvalues are obtained from G( E )  = 0 and (ii) 
the odd-parity eigenvalues are obtained from G( E )  = 00. This last theoretical result 
was already mentioned by Killingbeck (1987) as a revelation of the ‘computer 
experiment’. 

The present method was applied to some potentials where exact eigenvalues are 
available. The comparison of the results with the exact values on one hand, and with 
results of other confirmed methods on the other hand, show the accuracy and the 
efficiency of the present method. 
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